Interior-Point Methods for Massive Support Vector Machines

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior-Point Methods for Massive Support Vector Machines

We investigate the use of interior-point methods for solving quadratic programming problems with a small number of linear constraints, where the quadratic term consists of a low-rank update to a positive semidefinite matrix. Several formulations of the support vector machine fit into this category. An interesting feature of these particular problems is the volume of data, which can lead to quad...

متن کامل

An Affine-Scaling Interior-Point Method for Continuous Knapsack Constraints with Application to Support Vector Machines

An affine-scaling algorithm (ASL) for optimization problems with a single linear equality constraint and box restrictions is developed. The algorithm has the property that each iterate lies in the relative interior of the feasible set. The search direction is obtained by approximating the Hessian of the objective function in Newton’s method by a multiple of the identity matrix. The algorithm is...

متن کامل

Probabilistic Methods for Support Vector Machines

I describe a framework for interpreting Support Vector Machines (SVMs) as maximum a posteriori (MAP) solutions to inference problems with Gaussian Process priors. This can provide intuitive guidelines for choosing a 'good' SVM kernel. It can also assign (by evidence maximization) optimal values to parameters such as the noise level C which cannot be determined unambiguously from properties of t...

متن کامل

Active-Set Methods for Support Vector Machines

This chapter describes an active-set algorithm for the solution of quadratic programming problems in the context of Support Vector Machines (SVMs). Most of the common SVM optimizers implement working-set algorithms like the SMO method because of their ability to handle large data sets. Although they show generally good results, they may perform weakly in some situations, e.g., if the problem is...

متن کامل

Nearest neighbors methods for support vector machines

An important part of Pattern Recognition deals with the problem of classification of data into a finite number of categories. In the usual setting of " supervised learning " , examples are given that consists of pairs, (X i , Y i), i ≤ n, where X i is the d-dimensional covariate vector and y i is the corresponding " category " in some finite set C. In the examples, y i is known! Based on these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2002

ISSN: 1052-6234,1095-7189

DOI: 10.1137/s1052623400374379